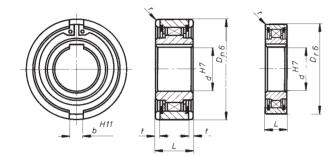

Baf Antriebstechnik

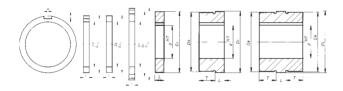
Rücklaufsperren



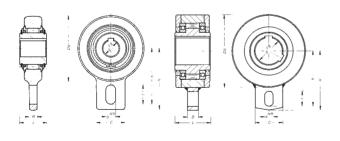
Typenübersicht und Lieferprogramm

System Gehäusefreiläufe

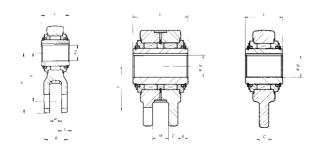
Bauart GFRS mit Deckel D1-D7


Einbaufreiläufe

Bauart BNF, BNFB, BFS, BSS, BFL, BNFR und BKK


Klemmkörperfreilaufkupplungen

Typen BF und KF


Außen- und Innenringe

für Klemmkörperfreilaufkupplungen der Bauart BF

Rücklaufsperren

Bauart RSBF, RSBR und RSR

Freiläufe Getriebe

Antriebselemente

Vorschubfreiläufe

Bauart LF, LFD und LFDE

Technische Hinweise für Rollen- und Klemmkörperfreiläufe

Die Auslegung eines Freilaufs nach Größe und Bauform ist abhängig vom Einsatzfall. Dabei sind die Einsatzbedingungen, Platzverhältnisse, Einbaulage, Umwelteinflüsse, Drehmoment, Schaltweg und -häufigkeit sowie weitere technische und physikalische Einzelheiten zu beachten.

Die nachfolgenden technischen Hinweise sowie die Informationen auf den einzelnen Typenblättern enthalten diese Informationen.

Ermittlung der Freilaufgröße nach Katalog mit Lastwechselfaktor "f" und Unsicherheitsfaktor "K"

Betriebs- oder Unsicherheitsfaktor "K":

Jede Konfiguration einer Maschine hat betriebsspezifische Bedingungen. Ungleichmäßiger Lauf, Verzögerung, Beschleunigung, Stöße, Vibrationen und ähnliches mehr, hervorgerufen von den Einsatzbedingungen und dem jeweiligen Antrieb. Hieraus resultiert der Betriebsfaktor "K".

Um dieser Erscheinung Rechnung zu tragen, wird das ursprüngliche, bzw. ermittelte Drehmoment mit dem Betriebsfaktor "K" erweitert und es ergibt sich somit das zu wählende Nenndrehmoment (Katalogsgröße).

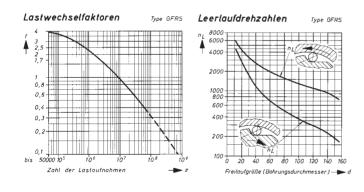
Nenndrehmoment $M_{nenn} = Katalogsgröße$

Betriebsdrehmoment $M_{Betr.}$ = konstruktions- u. betriebsbedingt

daraus: $M_{nenn} = M_{Betr.} \times K$

	Antriebskraftmaschine						
Arbeitsmaschine	VerbrMotor 1-zylindrig	VerbrMotor, Dampfmasch.	Elektromotor, Gas-, Dampfturb., mehrz. VerbrMotor				
kleine Massen, gleichförmiger Lauf	2,0-2,9	1,7-1,9	1,5-1,7				
mittlere Massen, gleichförmiger Lauf	2,2-3,1	1,9-2,1	1,6-1,8				
mittlere Massen, ungleichförmiger Lauf	2,4-3,3	2,1-2,3	1,8-2,0				
mittlere Massen, starke Stöße	2,7-3,8	2,4-2,7	2,1-2,4				
große Massen, starke Stöße	3,2-4,4	2,9-3,3	2,6-3,0				
sehr große Massen, starke Stöße	Auf Anfrage gelegentlich	>5,0	>3,0				

Betriebsfaktor K

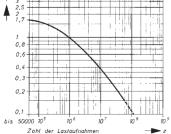

Lastwechselfaktoren und Leerlaufdrehzahlen Rollenfreiläufe

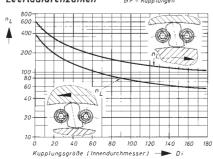
Der "Lastwechselfaktor" ist eine Verhältniszahl aus Betriebsdrehmoment M_{Bett} und Nenndrehmoment M_{nenn} . Bei steigendem Betriebsdrehmoment verringert sich die Anzahl der Lastwechsel.

Bei fallendem Betriebsdrehmoment steigt die Anzahl der Lastwechsel.

Im Prinzip handelt es sich um ein Lebensdauerdiagramm in Abhängigkeit vom Drehmoment.

Das Betriebsdrehmoment errechnet sich seinerseits aus dem Nenndrehmoment und dem Betriebs- oder Unsicherheitsfaktor "K", siehe Schaubild.




Freiläufe

Getriebe

Antriebselemente

Lastwechselfaktoren und Leerlaufdrehzahlen Klemmkörperfreiläufe

Die Leerlaufdrehzahl ist eine Größe, zugeordnet zur Freilaufdimension, bei der Verschleiß, Wärmeentwicklung und dergleichen in tragbarem Verhältnis zueinander liegen.

Bei Überschreiten dieser Drehzahlen in Abhängigkeit zur Zeit, setzt überproportionaler Verschleiß, Wärmeentwicklung und letztendlich Zerstörung ein. Diese Schaubilder sind deshalb freilaufspezifisch zu betrachten.

Wirkungsweise von Klemmkörper-Freiläufen

Geometrische und physikalische Beziehungen beim Klemmkörper-Freilauf

Die Wirkungsweise von Klemmkörperfreiläufen ist in der Abbildung rechts unten dargestellt: bei Drehung des Außen- bzw. Innenringes in Pfeilrichtung U stellen die Klemmkörper eine kraftschlüssige Verbindung zwischen dem Außenring und Innenring her. Hierbei muß die Bedingung Reibkraft $F_R = F \times \mu$ größer als die Umfangskraft Ui = Fi \times tan α bzw. Ua = Fa \times tan β erfüllt sein. α ist stets größer als β , da $\alpha=\beta+\phi$ ist. Somit muß bei der Berechnung darauf geachtet werden, daß tan α kleiner als der Reibungskoeffizient μ ist. Das zu übertragende Drehmoment je Klemmkörper bezogen auf den Innenring beträgt T = Ui \times Ri = Fi \times Ri \times tan α

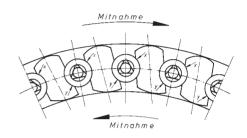
Zur Errechnung der Wälzpressung K = F/2 \times I \times ρs sind I = tragende Länge des Klemmkörpers und ρs = Ersatzkrümmungsradius.

Ersatzkrümmungsradius für den Außenring = $\frac{\text{Ra} \times \rho \text{sa}}{\text{Ra} + \rho \text{sa}}$

Der Wert der Wälzpressung k muß stets kleiner als k_{zul} sein. Für einen Klemm-körperfreilauf berechnet sich das max. Drehmoment nach der Formel:

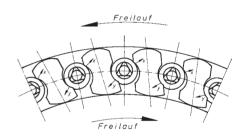
$$T_{zul} \leq 2 \times z \times \frac{Ri^2 \cdot \rho si}{Ri + \rho si} \times I \times tan\alpha \times k_{zul}$$

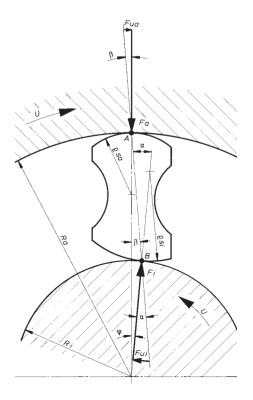
wobei z Die Klemmkörperzahl ist.


Der Abstand der beiden Berührungspunkte A und B ist immer größer als die halbe Differenz zwischen Da und Di, jedoch nach Belastung beim Reibschluß verschieden.

Eine wesentliche Rolle spielt nur noch die Wälzpressung bzw. die Hertzsche Pressung, die einen gewissen Maximalwert, resultierend aus dem Drehmoment, nicht überschreiten darf. Hierbei spielen zusätzlich Innen- und Außenradius der Klemmkörper und Klemmkörperlänge eine Rolle. Bei zu großem Drehmoment wird die Flächenpressung so groß, daß entweder die Klemmkörper bersten oder auf Innen- und Außenring bleibende Verformungen entstehen (Mulden).

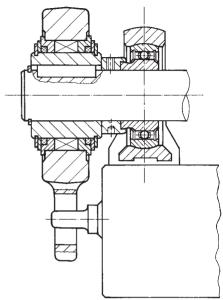
Wirkungsweise der Funktionsteile


Mitnahme:


Klemmstelzen in Richtung x und y eingedreht. Durch entsprechende Anordnung der Klemmkurven gleichmäßiger Anstieg der Klemmkräfte.

Freilauf:

In Freilaufrichtung werden die Klemmstelzen in Richtung x, y durch die Hülsenfedern leicht an die Laufflächen angefedert und in Klemmbereitschaft gehalten.



Rücklaufsperren Bauart RSBF, RSBR und RSR

Einbaubeispiel: Rücklaufsperre RSBF an einem Elevator

Rücklaufsperren der Bauart RSBF, RSBR und RSR werden hauptsächlich an Elevatoren, Schrägförderern, Becherwerken und Förderschnecken verwendet. Sie dienen dazu, den Rücklauf stillgesetzter Anlagen zu verhindern. Zur Abstützung gegenüber dem Maschinenkörper dient ein angeschmiedeter Drehmomenthebel, u. U. mit Langloch. Ein geeigneter Bolzen ist dann anzubringen.

Die Drehmomentübertragung von der Welle auf den Freilaufinnenring erfolgt mittels einer Paßfeder. Die Schmierung ist in der Regel durch eine einmalige Lebensdauerfettfüllung gewährleistet, sie kann aber auch auf Wunsch mit Nachschmiermöglichkeit ausgerüstet worden.

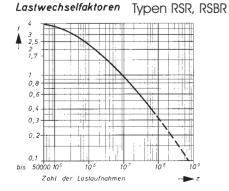
Die technische Ausstattung ist wie folgt:

RSBF Geschmiedeter Außenring mit angeschmiedetem Drehmomenthebel auf Wunsch mit Langloch versehen. Gleitlagerringe aus Grauguß badnitriert oder Gleitlagerbronze, die sich für Gleitgeschwindigkeiten bis max. 40 m/min eignen.

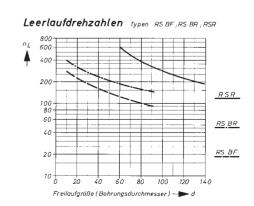
Die Lagerringe dürfen weder radial noch axial verspannt werden, wegen der Gefahr zu hoher Leerlaufreibung.

Als Klemmelement dienen Klemmkörperfreilaufkupplungen der Type BF.

RSBR Diese Type entspricht im wesentlichen der Type RSBF.

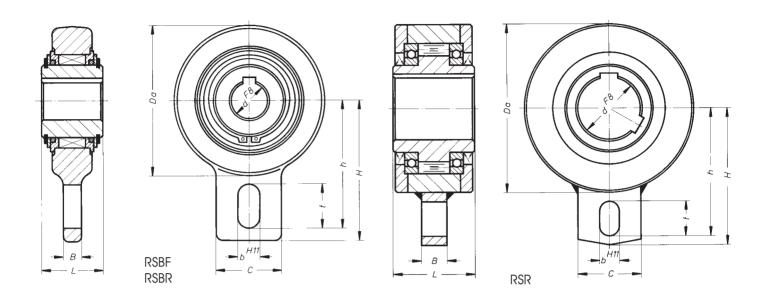

Freiläufe


Getriebe


Antriebselemente

Abweichend davon sind diese mit Klemmrollen ausgestattet. Dies ermöglicht den Einsatz unter erschwerten Bedingungen, wie z.B. 100% ED (24 h/Tag), erhöhte Drehzahl, sehr tiefe oder hohe Einsatztemperaturen.

RSR Sind Rollenrücklaufsperren kugelgelagert mit aufgeschraubten Deckeln und Radialwellendichtringen. Diese Bauart ist erforderlich, da durch die Baugröße schon bei geringen Drehzahlen hohe Umfangsgeschwindigkeiten entstehen.



Rücklaufsperren RSBF, RSBR und RSR

Paßfedernut nach DIN 6885 BI.1 vorbehaltlich Härteverzug. Ab Größe 80 2 Nuten um I20° versetzt.

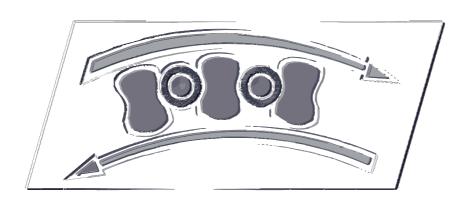
Bezeich- nung	M_{nenn}	n _{max}	ØF8 d	ØDa	L	Н	В	С	h	H11 b	t	Gewicht
_	Nm	min-1	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
RSBF 20	280	200	15-35	100	35	100	15	40	88	15	30	1,75
RSBF 35	1300	160	25-35	120	48	113	15	52	102	18	35	3,30
RSBF 55	1650	130	40-55	135	52	125	15	60	115	18	35	4,20
RSBF 70	2500	110	50-70	180	54	140	15	70	130	18	35	7,80
RSBF 75	3000	100	50-75	190	70	165	15	70	150	18	35	
RSBF 80	4500	90	60-80	200	85	215	30	90	200	25	45	20,00
RSBF 90	6000	80	70-90	230	95	215	30	90	205	25	45	27,50
RSBR 20	280	250	15-30	100	35	100	15	40	88	15	30	1,80
RSBR 35	1100	200	25-35	120	48	113	15	52	102	18	35	3,30
RSBR 50	1750	175	40-50	135	52	125	15	60	115	18	35	4,20
RSBR 70	2500	150	50-70	180	54	140	15	70	130	18	35	7,80
RSBR 75	3000	125	50-75	190	70	165	15	70	150	18	35	
RSBR 80	4500	115	60-80	200	85	215	30	90	200	25	45	20,00
RSBR 90	6000	100	70-90	230	95	215	30	90	205	25	45	27,50
RSR 80	7500	210	60-80	200	100	220	30	90	205	25	45	22,00
RSR 90	10000	180	70-90	230	110	220	30	90	205	25	45	30,00
RSR 100	17000	150	80-100	270	130	220	40	100	205	35	55	48,00
RSR 120	45000	125	100-120	310	170	220	60	150	auf Anfrage!		82,00	

Maß- und Konstruktionsänderungen vorbehalten. Andere Bohrungen als in der Maßtabelle angegeben auf Anfrage. Langloch im Drehmomenthebel bei den Typen RSBF 35 - RSBF 75 und RSBR 35 - RSBR 75 Standard

Index für Langloch 02; ohne 01

Bestellbeispiel: RSBF 55 - 50 - 02

Type Bohrungs-Ø mit Langloch


Freiläufe Getriebe

Antriebselemente

F22

Baß Antriebstechnik GmbH Kirnwasen 1 D-91607 Gebsattel Telefon (+49)(0) 98 61/94 82-0 Telefax (+49)(0) 98 61/94 82-64 info@bass-antriebstechnik.de

www.bass-antriebstechnik.de